ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

PXIe-5423

РХІ генератор сигналов:16 разрядов, полоса частот 40 МГц

Данные характеристики применимы к одноканальным и двухканальным модулям PXIe-5423.

Содержание

Определения	2
Условия	
Аналоговый вывод	2
Стандартные функции	4
Сигнал произвольной формы	10
Все режимы генерации	12
Тактовый сигнал	13
Синхронизация	13
Синхронизация с NI-TClk API	13
Ввод-вывод РFI	14
Запуск	15
Маркер	15
Калибровка	16
Питание	16
Окружающая среда	16
Условия эксплуатации	16
Условия хранения	17
Удары и вибрации	17
Физические характеристики	17
Соответствие требованиям и сертификаты	18
Соответствие стандартам безопасности	18
Электромагнитная совместимость	18
Соответствие требованиям стандартов ЕС	19
Сертификация продукта и декларации	19
Охрана окружающей среды	19

Определения

Гарантированные характеристики описывают производительность модели в заявленных условиях эксплуатации и обеспечиваются гарантией на модель. Гарантированные характеристики учитывают погрешности измерений, температурный дрейф и старение. Гарантированные характеристики обеспечиваются конструкцией или проверяются в процессе производства и калибровки.

Следующие характеристики описывают значения, относящиеся к использованию модели в заявленных условиях эксплуатации, но не обеспечиваемые гарантией на модель.

- *Типовые* характеристики это характеристики, которым удовлетворяет большинство молелей.
- Номинальные характеристики описывают атрибут, основанный на конструкции, тестировании на соответствие или на дополнительном тестировании.
- Измеренные характеристики это характеристики, измеренные для репрезентативной модели.

Все характеристики являются номинальными, если не указано иное.

Условия

Все характеристики действительны в следующих условиях, если не указано иное:

- Согласование сигналов 50 Ом относительно общего
- Импеданс нагрузки 50 Ом
- Амплитуда 2,4 В_{п-п}.
- Свойство Analog Path атрибута NIFGEN_ATTR_ANALOG_PATH установлено равным Main (по умолчанию)
- Источником опорных тактовых сигналов (Reference Clock) задан внутренний опорный сигнал (Onboard Reference Clock)

Гарантированные и типовые характеристики действительны в следующих условиях, если не указано иное:

- Температура окружающей среды от 0 °C до 55 °C
- Время прогрева перед началом работы 15 минут
- Самокалибровка выполнена после стабилизации режима прибора
- Поддерживается и соблюдается цикл внешней калибровки
- Скорость вентилятора шасси PXI Express установлена на HIGH, имеющиеся поролоновые фильтры вентилятора удалены, а пустые слоты заняты блокираторами слотов для шасси PXI и панелями-заглушками.

Аналоговый вывод

Количество каналов ¹	1 или 2
Тип выхода	Несимметричный относительно опорного
	уровня

¹ Каналы поддерживают независимую генерацию сигналов

Тип разъема	SMA
Разрешающая способность ЦАП	16 разрядов
Диапазон амплитуд ² , с шагом 0,16 дБ	
нагрузка 50 Ом	от 0,00775 $B_{\text{п-п}}$ до 12 $B_{\text{п-п}}$
без нагрузки	от 0,0155 В _{п-п} до 24 В _{п-п}
Диапазон смещения	$\pm 50\%$ от диапазона амплитуд $\left(B_{\text{п-п}}\right)^3$
Разрешающая способность по смещению	16- разрядный полный диапазон
Погрешность на постоянном токе ⁴	
В пределах ±5 °C от температуры самокалибровки	$\pm 0,35\%$ от диапазона амплитуд $\pm 0,35\%$ от установленного смещения ± 500 мкВ, гарантируется 5
от 0 °С до 55 °С	$\pm 0,55\%$ от диапазона амплитуд $\pm 0,55\%$ от установленного смещения ± 500 мкВ, тип.
Погрешность амплитуды на переменном токе 6 (в пределах ± 5 °C от температуры самокалибровки)	$\pm 1,0\% \pm 1 \ { m MB}_{\mbox{\tiny П-П}},$ гарантировано
Выходное сопротивление	50 Ом
Импеданс нагрузки	Выходной сигнал компенсируется заданным пользователем импедансом
Подключение выхода (опорный общий)	По постоянному току
Подключение выхода ⁷	Выбирается программно
Максимальная перегрузка на выходе ⁸	±12 В _{п-п} от источника 50 Ом
Суммирование сигналов	Поддерживается ⁹

_

² Значения амплитуды предполагают использование полной диапазона ЦАП. NI-FGEN использует сигналы менее полного диапазона ЦАП для создания амплитуд меньше минимального значения.

³ Например, диапазон 5,5 B_{n-n} равен максимальному смещению \pm 2,75 B. Диапазон смещения ограничен абсолютным изменением сигнала \pm 12 B на высокоимпедансных нагрузках (*Амплитуда* + | *Смещение* | \leq 12 B для нагрузки с высоким импедансом или 6 B для нагрузки 50 DM).

⁴ Нагрузка с высоким импедансом (импеданс нагрузки установлен на 1 МОм). Аналоговый тракт откалиброван для устранения погрешностей амплитуды, коэффициента передачи и смещения.

 $^{^5}$ Где диапазон амплитуд - заданная амплитуда в $B_{\text{п-n}}$. Например, для сигнала постоянного тока с диапазоном амплитуд 16 $B_{\text{п-n}}$ и смещением 1 ,5 погрешность на постоянном токе будет вычислена с помощью следующего уравнения: \pm [(0,35% * 16 B) + (0,35% * 1,5 B) + 500 мкВ] = \pm 61,75 мВ. Стандартная функция для постоянного тока всегда использует диапазон амплитуд 24 24 24 24 25

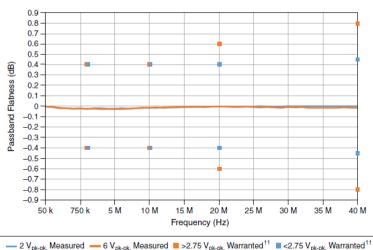
⁶ С синусоидальным сигналом 50 кГц и оконечной нагрузкой с высоким импедансом.

⁷ Когда выходной тракт отключен, выход канала замыкается резистором 50 Ом, 1 Вт.

⁸ Повреждения не возникают, если аналоговые выходные каналы закорочены постоянно.

⁹ Выходные контакты нескольких генераторов сигналов PXIe-5423 могут быть соединены вместе.

Стандартные функции


Синусоилальный сигнал

Частотный диапазон	от 0 МГц до 40 МГц
Шаг по частоте	2,84 мкГц

Таблица 1. Неравномерность в полосе пропускания 10

Частота синуса	Неравномерность в полосе пропускания (дБ), гарантируемая	
	от 0,06 В _{п-п} до 2,75 В _{п-п}	>2,75 B _{π-π}
1 МГц	±0,4	±0,4
10 МГц	±0,4	±0,4
20 МГц	±0,4	±0,6
40 MΓц ¹¹	±0,45	±0,8

Рисунок 1. Неравномерность в полосе пропускания

 11 Для частот синуса 40 МГц при температуре окружающей среды выше 45 С, добавьте $\pm 0{,}015$ дБ/°С к неравномерности в полосе пропускания.

 $^{^{10}}$ Нормализовано относительно 50 кГц.

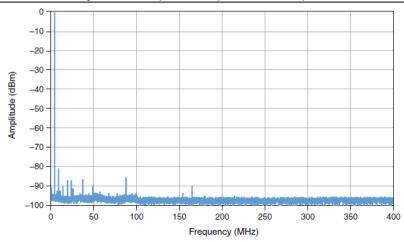
^{4 |} ni.com | PXIe-5423. Технические характеристики

Таблица 2. Динамический диапазон без паразитных составляющих (SFDR) с

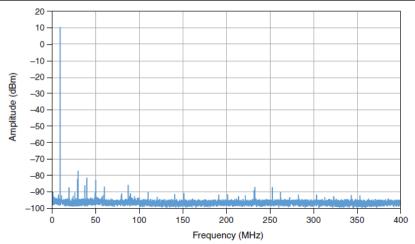
Частота синуса	Частота синуса SFDR с гармониками (дБн), измеренный		еренный
	от 0,1B _{п-п} до 1B _{п-п}	от 1В _{п-п} до 2,75 В _{п-п}	>2,75 B _{п-п}
1 МГц	62	76	77
3 МГц	62	74	63
5 МГц	61	74	58
10 МГц	61	69	52
20 МГц	61	63	44
30 МГц	59	60	40
40 МГц	55	58	35

Таблица 3. Динамический диапазон без паразитных составляющих (SFDR) без гармоник¹¹

Частота синуса	SFDR без гармоник (дБн), измеренный		
	от 0,1B _{п-п} до 1 В _{п-п}	от 1В _{п-п} до 2,75 В _{п-п}	>2,75 Вп-п
1 МГц	62	84	92
3 МГц	62	84	92
5 МГц	62	84	92
10 МГц	61	83	90
20 МГц	61	83	90
30 МГц	61	83	83
40 МГц	61	83	83


Таблица 4. Суммарный коэффициент гармонических искажения (THD)¹³

Частота синуса	ТН D (дБн), измеренный	
	от 0,1 В _{п-п} до 2,75 В _{п-п}	от 2,75 В _{п-п} до 12 В _{п-п}
1 МГц	79	76
3 МГц	73	62
5 МГц	72	56
10 МГц	68	49
20 МГц	61	43
30 МГц	58	39
40 МГц	55	35


 $^{^{12}}$ При амплитуде -1 дБ от полного диапазона со смещением 0 В постоянного тока, измерено от постоянного тока до 40 МГц и ограничено выбросами -90 дБ/мВт на низких амплитудах.

_

¹³ При амплитуде -1 дБ полной шкалы, измерено от постоянного тока до 6 гармоники.

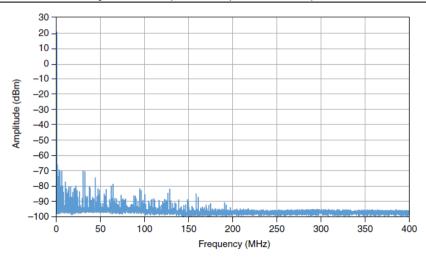


Рисунок 3. Спектр 10 МГц 13 при 2 В $_{\text{п-п}}$, измеренный

 $^{^{14}}$ Уровень шума ограничен уровнем шума измерительного устройства.

^{6 |} ni.com | PXIe-5423. Технические характеристики

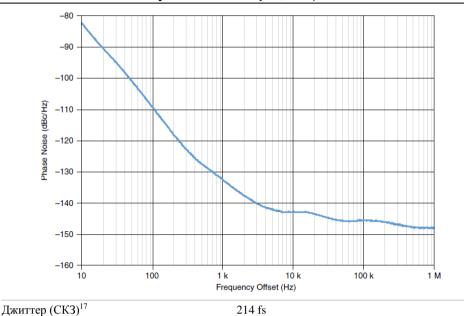


Таблица 5. Средняя плотность шума¹⁵

Амплитуда Средняя плотность п		гь шума, тип.
	(дБ/мВт/Гц)	$\frac{_{\mathrm{HB}}}{\sqrt{\Gamma_{\mathrm{H}}}}$
0,06 В _{п-п}	-154	3,9
0,1 В _{п-п}	-154	3,9
0,4 В _{п-п}	-150	5,8
1 В _{п-п}	-145	13
2 В _{п-п}	-141	20
4 В _{п-п}	-132	53
12 В _{п-п}	-125	107

PXIe-5423. Технические характеристики | © National Instruments | 7

 $^{^{15}}$ При небольших амплитудах средняя плотность шума ограничена уровнем шума -154 дБм/мВт/Гц

Прямоугольный сигнал

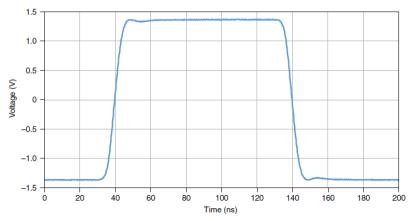
Диапазон частот	от 0 МГц до 25 МГц
Шаг по частоте	2,84 мкГц
Минимальная длительность импульса/междуимпульсного интервала ¹⁸	17,6 нс
Разрешающая способность по коэффициенту заполнения (K3)	<0,001%
Время нарастания/спада 19	9 нс, измеренное
Искажение	1,0%, измеренное
Джиттер (СКЗ) ²⁰	1 пс, измеренный

1/

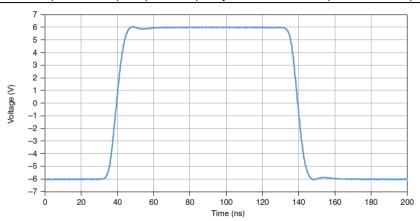
¹⁶ Для несущей 40 МГц и привязкой к внутренней опорной частоте при удаленных выбросах.

 $^{^{17}}$ Для несущей 40 МГц, проинтегрировано от 100 Гц до 100 кГц, привязка к внутренней опорной частоте.

¹⁸ Используется для расчета предела КЗ: Mинимальный K3 = (100% * Mинимальная длительность импульса) $\div T_{\Pi e puod}$ и Mаксимальный K3 = 100% - Mинимальный K3.


Для получения дополнительной информации о взаимосвязи между минимальной длительностью импульса/межимпульсного интервала и характеристиками K3, обратитесь на сайт *ni.com*.

¹⁹ Время нарастания измерено от 10% до 90%.


²⁰ Проинтегрировано от 10 Γ ц до 4 М Γ ц для прямоугольного сигнала 22 М Γ ц.

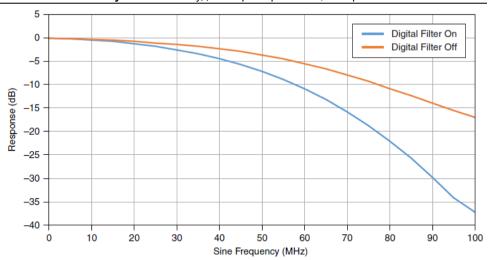
^{8 |} ni.com | PXIe-5423. Технические характеристики

Рисунок 6. Переходная характеристика прямоугольного сигнала при 2,75 В_{п-п}, измеренная

Рисунок 7. Переходная характеристика прямоугольного сигнала при 12 В_{п-п.} измеренная

Пилообразный и треугольный сигналы

Диапазон частот	от 0 МГц до 5 МГц
-----------------	-------------------

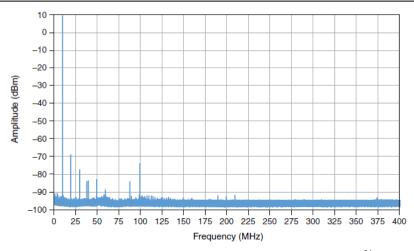

Функции, определяемые пользователем

Диапазон частот	от 0 МГц до 40 МГц
Шаг по частоте	2,84 мкГц
Точек сигнала	8192
Время нарастания переходной характеристики	7 нс, измеренное

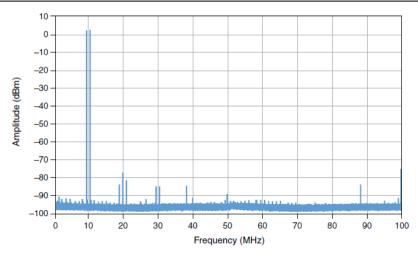
Сигнал произвольной формы

Длина сигнала	От 2 отсчетов до 64 000 000 отсчетов
Пользовательская частота дискретизации	
Цифровой фильтр включен	от 5,6 мкОтсчетов/с до 200 МОтсчетов/с
Цифровой фильтр выключен	от 3,125 МОтсчетов/с до 200 МОтсчетов/с
Фильтры сигнала	
Цифровой фильтр включен	Полоса пропускания = 0,2 * Пользовательская частота дискретизации
Цифровой фильтр выключен	Без восстановления подавленного отраженного сигнала
Минимальный квант	1 отсчет
Время нарастания ²¹	
Цифровой фильтр включен	15,3 нс, измеренное
Цифровой фильтр выключен	8,4 нс, измеренное
Объем встроенной памяти	128 МБ на канал

Рисунок 8. Амплитудная характеристика²². измеренная


Digital Filter On – цифровой фильтр включен; Digital Filter Off – цифровой фильтр выключен

²¹ При максимальной пользовательской частоте дискретизации.


²² Относительно 50 кГц при 2 $B_{\text{п-п}}$ и максимальной пользовательской частоте дискретизации.

^{10 |} ni.com | PXIe-5423. Технические характеристики

Рисунок 9. Спектр однотонального сигнала частотой 10 МГц²³, измеренный

Рисунок 10. Спектр двухтонального сигнала частотой 9,5 МГц и 10,5 МГц 24 , измеренный

^{2:}

 $^{^{23}}$ При включенном цифровом фильтре, -1 дБ полного диапазона, 2 $B_{\text{п-п}}$, 200 МОтсчетов/с. Уровень шума ограничен уровнем шума измерительного устройства.

 $^{^{24}}$ При включенном цифровом фильтре, -7 дБ полного диапазона, 2 $B_{\text{п-п}}$, 200 МОтсчетов/с. Уровень шума ограничен уровнем шума измерительного устройства.

Все режимы генерации

Рисунок 11. Межканальные перекрестные наводки, измеренные

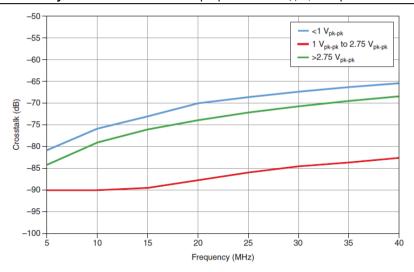
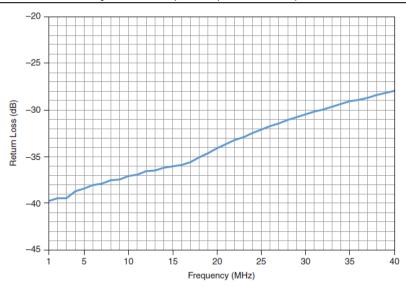



Рисунок 12. Потери на отражение, измеренные

Тактовый сигнал

Источник сигнала Reference Clock	Внутренний PXIe_CLK100 (разъем объединительной панели)
Частота сигнала Reference Clock	100 МГц (<±25 ppm)
Частота сигнала Sample Clock	800 МГц
Погрешность внутренней опорной частоты ²⁵	
Начальная погрешность после калибровки	1,5 ррт, гарантируется
Временной дрейф ²⁶	1 ррт в год, гарантируется
Погрешность	Начальная погрешность после калибровки ± временной дрейф, гарантируется

Синхронизация

Межканальный сдвиг, между каналами многоканального PXIe-5423 ²⁷		
<2,75 В _{п-п}	±110 пс	
>2,75 В _{п-п}	±275 пс	

Примечание: Каналы многоканального РХІе-5423 автоматически синхронизируются, если находятся в одной сессии NI-FGEN.

Синхронизация с NI-TClk API²⁸

NI-TClk - это API, который обеспечивает системную синхронизацию поддерживаемых модулей РХІ в одном или нескольких шасси РХІ, которые можно использовать с РХІе-5423 и NI-FGEN

NI-TClk использует общий опорный сигнал Reference Clock и сигналы запуска для выравнивания тактовых сигналов Sample Clock модулей РХІ и синхронизации распределения и приема сигналов запуска. Эти сигналы маршрутизируются через объединительную панель шасси РХІ без внешних кабельных соединений между модулями РХІ в одном шасси.

Сдвиг между модулями PXIe-5413 при использовании синхронизации NI-TClk²⁹

Если синхронизация от внешнего источника сигнала Reference Clock, погрешность опорной частоты равна погрешности внешнего сигнала Reference Clock.

²⁶ Время дрейфа отсчитывается от даты последней внешней калибровки.

²⁷ С синусоидальным сигналом 20 МГц и при условии, что оба канала настроены на одинаковую

²⁸ Поддержка синхронизации NI-TClk для PXIe-5423 была впервые доступна в NI-FGEN 18.1. NI-TClk устанавливается с NI-FGEN.

Синхронизация NI-TClk без ручной подо	стройки ³⁰
Сдвиг, пик-пик ³¹	300 пс, тип.
Джиттер, пик-пик ³²	125 пс, тип.
Синхронизация NI-TClk с ручной подстр	ройкой ²⁹
Сдвиг, пик-пик 30	<10 пс.
Джиттер, пик-пик ³¹	5 пс.
Задержка сигнала Sample Clock/ разрешающая способность для подстройки	3,8E(-6) * <i>nepuod сигнала Sample Clock</i> Например, при 100 МОтсчетов/с, 3,8E(-6) * (1/100 МОтсчетов/с) = 38 фс

Дополнительная информация

- Обзор NI-TClk
- Для получения информации о ручной настройке и джиттере при синхронизации nocemume страниих ni.com/info и введите информационный код PXIe 5423 Sync Jitter.

Ввод-вывод PFI

Количество контактов	10
Тип разъема	
PFI 0 и PFI 1	SMA
AUX 0/PFI <07>	MHDMR
Логические уровни	3,3 B
Максимальный диапазон входного напряжения	+5 B
$V_{ m IH}$	2 B
$V_{ m IL}$	0,8 B
Диапазон частот	от 0 МГц до 25 МГц
Перекрестные помехи между PFI и каналом	-80 дБн, измеренные

²⁹ Технические характеристики действительны для любого количества модулей РХІе-5423, установленных в одно шасси, при этом каждый модуль PXIe-5423 использует одну сессию NI-FGEN и для всех аналоговых параметров заданы одинаковые значения, а частота Sample Clock равна 100 МОтсчетов/с. Для получения информации о других конфигурациях, включая системы из нескольких шасси, обратитесь в службу технической поддержки NI по адресу *ni.com/support*.

Ручная подстройка - это процесс минимизации джиттера и рассогласования синхронизации путем регулировки сигналов Trigger Clock (TClk) с использованием драйвера прибора.

Вызвано различиями в тактовом сигнале и задержках аналогового тракта.

³² Джиттер синхронизации - это изменение в выравнивании модуля между вызовами NI-TClk Synchronize.

^{14 |} ni.com | PXIe-5423. Технические характеристики

Запуск

Источники (выходы)/приемники (входы)	PFI <01> (разъемы SMA передней панели) AUX 0/PFI <07> (Разъем MHDMR передней панели) PXI_Trig <07> (разъем объединительной панели)
Поддерживаемые сигналы запуска	Start Trigger Script Trigger
Тип сигнала запуска	По нарастающему фронту
Режимы запуска ³³	Одиночный (Single) Непрерывный (Continuous) Пошаговый (Stepped) Пакетный (Burst)
Входное сопротивление (по постоянному току)	>100 кОм

Маркер

PFI <01> (разъемы SMA передней панели) AUX 0/PFI <07> (Разъем MHDMR передней панели) PXI_Trig <07> (разъем объединительной панели)	
200 нс	
±2 нс	
±20 нс	
4	

 $^{^{33}}$ В режимах списка частот, сигналов произвольной формы и произвольной последовательности.

Калибровка

Самокалибровка	Для калибровки коэффициента передачи и смещения на постоянном токе используется встроенный образцовый источник. Самокалибровка инициируется пользователем программно и занимает около 2 минут.
Внешняя калибровка	Внешняя калибровка калибрует TCXO, источник опорного напряжения, коэффициент передачи и смещение на постоянном токе. Соответствующие константы хранятся в энергонезависимой памяти.
Межкалибровочный интервал	Технические характеристики действительны в течение 2 лет после внешней калибровки
Время прогрева ³⁴	15 минут

Питание

Ток		
+3,3 B	2,3 A	
+12 B	1,8 A	
Полная мощность	29 Вт	

Окружающая среда

Максимальная высота над уровнем моря	$2,000$ м, 800 мбар (при температуре окружающей среды $25~^{\circ}\mathrm{C}$)
Степень загрязнения	2

Для эксплуатации только в помещении.

Условия эксплуатации

Температура окружающей среды	от 0 °C до 55 °C (Протестировано в соответствии с IEC-60068-2-1 и IEC-60068-2-2. Удовлетворяет требованиям MIL-PRF-28800F, класс 3, для нижнего предела температуры, и MIL-PRF-28800F, класс 2 для верхнего предела температуры)
Относительная влажность	от 10% до 90%, без конденсата (Протестировано в соответствии с IEC-60068-2-56).

³⁴ Прогрев начинается после включения питания шасси, распознавания PXIe-5423 хостом и его конфигурирования с помощью NI-FGEN. Самокалибровку рекомендуется проводить после прогрева.

^{16 |} ni.com | PXIe-5423. Технические характеристики

Условия хранения

Температура окружающей среды	от -40 °C до 71 °C (Протестировано в соответствии с IEC-60068-2-1 и IEC-60068-2-2. Удовлетворяет требованиям MIL-PRF-28800F, класс 3).
Относительная влажность	от 5% до 95%, без конденсата (Протестировано в соответствии с IEC-60068-2-56).

Удары и вибрации

Удары при эксплуатации	30 g, полупериод синуса, 11 мс импульс
	(Протестировано в соответствии с
	IEC-60068-2-27. Тестовый профиль
	удовлетворяет ограничениям
	MIL-PRF-28800F, класс 2).
Случайные вибрации	
При эксплуатации	От 5 до 500 Γ ц, 0,3 g_{rms} (Протестировано в соответствии с IEC-60068-2-64).
Не при эксплуатации	от 5 Гц до 500 Гц, 2,4 g_{rms} (Протестировано в соответствии с IEC-60068-2-64. Тестовый профиль превышает требования MIL- PRF-28800F, класс 3).

Физические характеристики

Размеры	21,6 см х 2,0 см х 13,0 см 3U, один слот, модуль PXI Express
Bec	
Одноканальный модуль	369 г
Двухканальный модуль	376 г
Шинный интерфейс	
Форм-фактор	Модуль Gen 1 x4
Совместимость со слотами	PXI Express или гибридный

Соответствие требованиям и сертификаты

Соответствие стандартам безопасности

Изделие соответствует требованиям следующих стандартов по безопасности электрооборудования для измерений, управления и лабораторного применения:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA C22.2 No. 61010-1

Примечание: Информацию о сертификатах UL и других сертификатах безопасности вы можете найти на товарной этикетке или в разделе *Сертификация продукта и декларации*.

Электромагнитная совместимость

Изделие удовлетворяет требованиям следующих стандартов по электромагнитной совместимости (ЭМС) электрооборудования для измерений, управления и лабораторного применения:

- EN 61326-1 (IEC 61326-1): Класс А излучений; Минимальные требования к помехозащищенности
- EN 55011 (CISPR 11): Группа 1; Класс А излучений
- EN 55022 (CISPR 22): Класс А излучений
- EN 55024 (CISPR 24): Помехозащищенность
- AS/NZS CISPR 11: Группа 1; Класс А излучений
- AS/NZS CISPR 22: Класс А излучений
- FCC 47 CFR Часть 15В: Класс А излучений
- ICES-001: Класс А излучений

Примечание: В Соединенных Штатах (согласно федеральному закону FCC 47 CFR), оборудование класса А предназначено для использования в коммерческих зданиях, зданиях легкой и тяжелой промышленности. В Европе, Канаде, Австралии и Новой Зеландии (согласно CISPR 11) оборудование класса А предназначено для использования только в зданиях тяжелой промышленности.

Примечание: К оборудованию группы 1 (по CISPR 11) относится любое промышленное, научное или медицинское оборудование, которое не генерирует намеренно радиочастотную энергию для обработки материалов, дефектоскопии или анализа.

Примечание: За получением деклараций и сертификатов о соответствии требованиям стандартов по электромагнитной совместимости, а также дополнительной информации, обратитесь к разделу *Сертификация продукта и декларации*.

Соответствие требованиям стандартов ЕС С €

Изделие соответствует основным требованиям следующих директив СЕ:

- 2014/35/ЕЦ: Лиректива по безопасности низковольтного оборудования
- 2014/30/ЕU: Директива по ЭМС.

Сертификация продукта и декларации

Лля получения дополнительной информации о соответствии нормативным требованиям обратитесь к Декларации о соответствии» (DoC). Чтобы получить сертификаты и Лекларацию о соответствии продукции NI, откройте страницу ni, com/certification, выполните поиск по серии и номеру модели и шелкните по соответствующей ссылке в столбие Certification

Охрана окружающей среды

NI разрабатывает и производит продукцию с учетом требований по защите окружающей среды и принимает во внимание, что отказ от использования некоторых опасных веществ при изготовлении изделий полезен как для среды обитания, так и для потребителей.

Лополнительная информация по защите окружающей среды находится на странице Минимизации нашего воздействия на окружающую среду по адресу ni.com/environment. Эта страница содержит положения и лирективы по охране окружающей среды, которые соблюдает компания NI. а также другая информация о защите окружающей среды, не включенная в настоящий локумент.

Утилизация электрического и электронного оборудования (WEEE)

Покупателям из стран EC: По окончании жизненного пикла все изделия NI должны быть утилизированы в соответствии с местными законами и правилами. Более подробную информацию об утилизации оборудования NI в вашей стране вы можете узнать на странице ni.com/environment/weee.

电子信息产品污染控制管理办法(中国 RoHS)

中国客户 National Instruments 符合中国电子信息产品中限制使用某些有害物 质指令(RoHS)。关于 National Instruments 中国 RoHS 合规性信息、请登录

ni.com/environment/rohs china。 (Для получения информации о соответствии RoHS в Китае, обратитесь на страницу

ni.com/environment/rohs china.)

Информация может быть изменена без уведомления. Обратитесь к документу NI Trademarks and Logo Guidelines на сайте ni.com/trademarks для получения дополнительной информации о торговых марках National Instruments. Названия других упомянутых в данном руководстве изделий и производителей являются торговыми марками или торговыми именами соответствующих компаний. Для получения информации о патентах, которыми защищены продукция или технологии National Instruments, выполните команду Help»Patents из главного меню вашего программного обеспечения, откройте файл patents.txt на имеющемся у вас компакт-диске или откройте документ National Instruments Patent Notice на странице ni.com/patents. Информацию о лицензионном соглашении с конечным пользователем (EULA), а также правовые положения сторонних производителей вы можете найти в файле геаdme вашего продукта NI. Обратитесь к документ Export Compliance Information на странице ni.com/legal/export-compliance за глобальными принципами торговой политики NI, а также для получения необходимых кодов HTS, ECCN и других данных об экспорте/импорте. NI HE ДАЕТ НИКАКИХ ЯВНЫХ ИЛИ ПОДРАЗУМЕВАЕМЫХ ГАРАНТИЙ ОТНОСИТЕЛЬНО ТОЧНОСТИ ЭТОЙ ИНФОРМАЦИИ И НЕ НЕСЕТ ОТВЕТСТВЕННОСТИ ЗА ЛЮБЫЕ ОШИБКИ. Для покупателей из правительства США: Данные, содержащиеся в этом руководстве, были разработаны на личные средства и подпадают под действие применимых ограниченных прав и ограниченных прав на данные в порядке, предусмотренном законами FAR 52.227-14, DFAR 252.227-7014 и DFAR 252.227-7015.